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Abstract
A method is presented of in situ measurements of stacking fault densities
in shocked face-centred-cubic (FCC) crystals using x-ray diffraction. Using
results from both the second and fourth diffraction orders, wherein shifts in
the Bragg peaks due to faulting are accounted for, we calculated fault densities
present in a molecular dynamics (MD) simulation of shocked single crystal of
copper. The results are in good quantitative agreement with dislocation density
measurements inferred directly from the MD simulation. The x-ray diffraction
method thus presents a real possibility for experimental determination in real
time of dislocation densities in crystals during shock wave passage.

1. Introduction

For several decades, time-dependent in situ x-ray diffraction has been used as a tool for studying
the structure of crystals under shock loading, enabling material investigation at the lattice
level on extremely short (nano- and picosecond) timescales [1–9]. X-rays are scattered from
the atoms in a crystal and interfere constructively when the well-known Bragg condition is
satisfied:

λ = 2dhkl sin θB, (1)

where λ is the x-ray wavelength, θB is the Bragg angle between the diffracted signal and the
planes defined by indices (hkl), and dhkl is the spacing of the crystal planes labelled by these
indices.

Elastic strains in a crystal cause angular shifts in the diffracted radiation peaks. Under
the assumption of zero plastic dilatation, an x-ray diffraction measurement of the average
transverse and longitudinal elastic strains in a material therefore provides quantitative
information about the plastic strains under conditions of uniaxial strain.

In certain pressure regimes, the rate of plastic flow in a crystalline material subjected to
uniaxial shock loading is directly related to the presence and movement of dislocations within
it (we ignore here, for example, plastic flow related to twinning). The rate at which a material
undergoes plastic strain, ε̇p, is determined by the well-known equation due to Orowan [10],
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Figure 1. Interface formed by dislocations at the shock front, moving from top to bottom in the
figure, as modelled by Smith [12]. The formed dislocations relieve shear stress in the material and
a cubic lattice with a reduced unit cell size is formed behind the shock front.

which provides the following relationship between ε̇p and the density of the mobile dislocations,
ρm, the magnitude of their Burgers vector, b, and their mean speed 〈v〉:

ε̇p = bρm〈v〉. (2)

The high plastic strain rates observed in materials clearly indicate that dislocation densities
within shocked samples can be extremely high. Recent in situ x-ray diffraction experiments
have shown that a Cu sample shocked on timescales shorter than a nanosecond approaches
the hydrostat, with lateral plastic strains of several per cent [8, 11]. Even assuming that the
maximum dislocation velocity is the local speed of sound, dislocation densities must exceed
1011 cm−2, and would be much higher for lower dislocation velocities and large strain rates.
Taking into account the fact that the observed strain rates in the above-referenced experiments
were lower bounds, experimental evidence of this nature points towards possible dislocation
densities in excess of 1012 cm−2, a conclusion which, as will be shown later, is borne out by
large-scale molecular dynamics (MD) calculations.

In order to put this work into an historical context, it is important to note that we are only
now, with the development of MD simulations, beginning to come to a detailed understanding
of the nature of shock-induced plasticity at the lattice level.

One of the first models that attempted to describe the behaviour of a cubic lattice under
shock conditions was proposed by Smith [12] (figure 1). In this model, edge dislocations
are produced at the shock front, and move (supersonically) along with the front, allowing
compression in all directions behind it. The model was later modified by Meyers [13, 14], who
proposed lower dislocation velocities, with a continuing production of layers of dislocations
within the crystal behind the shock front. In both these models, the edge dislocations created
at the front move in order to accommodate the high shear stresses caused by the shock wave
to which the crystal is subjected. They form an interface between the shocked and unshocked
regions in the crystal, which are both cubic, with the lattice in the shocked region having a
reduced unit cell size. The Meyers’ model also predicts large dislocation densities, similar in
number to those referred to above.

More recently, large-scale multi-million-atom MD simulations have shed new light on
the possible mechanisms occuring in shocked crystals. In the seminal work of Holian and co-
workers [15], it was shown that high densities of stacking faults could be generated at the shock
front of a FCC crystal, relieving the shear stress. Similar conclusions have been reached in
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more recent work which we use here, involving even larger numbers of atoms and pre-existing
dislocations [16].

However, it is important to note that, despite the inference from Orowan’s equation that
experimentally determined strain rates require large dislocation densites, and the confirmations
of MD simulations which corroborate such a conclusion, no direct experimental evidence
for such high dislocation densities exists to date. Recovered samples consistently display
dislocation density orders of magnitude smaller than those referred to above [14, 17]. It is
presumed that the reason for this is the reaction between and mutual annihilation of dislocations
of opposing signs upon shock release. However, as this has never been shown experimentally,
there clearly remains a pressing need to develop in situ diagnostics of dislocation densities, in
order to verify these models and fundamental assumptions experimentally.

Stacking faults in FCC crystals, such as copper, are known to introduce angular shifts in
the intensity peaks of x-ray diffraction scattered from the material in addition to the shifts due to
changes in lattice spacing. The magnitude and direction of the fault-induced shift depend on the
Miller indices (hkl) of the diffracting planes [9, 18, 19]. Thus, as pointed out by Zaretsky [19],
in situ x-ray diffraction offers a potential method of directly measuring stacking fault densities
within a shocked solid.

That said, the dislocation densities of interest within shocked solid are far greater than
those found in static samples, and MD simulations further indicate large elastic distortions
of the lattice between dislocations. It is therefore pertinent to ask whether such shifts could
possibly be observed in a shocked sample? In order to take the first steps in answering this
question, and to motivate experimental work in this area, we have taken the output of a large-
scale MD model, and post-processed the data in order to obtain simulated x-ray diffraction
patterns. We then determined the positions of the peaks in the diffracted radiation, and used
the positions of peaks of differing Miller indices to infer stacking fault densities. The stacking
fault densities thus inferred are compared with those deduced simply from counting faults by
the colour coding of atoms according to their coordination number. As we shall show, good
agreement is found, pointing towards a real possibility of in situ experimental measurement of
dislocation concentrations in shocked materials.

2. Theory

The presence of stacking faults in a crystal causes a shift in the phase of the incident and
scattered x-rays with respect to the lattice, which in turn alters the resultant Bragg peak
position [18]. This shift in the Bragg peak is additional to the shift due to the change in the
mean lattice spacing due to shock compression. The expressions for the stacking-fault induced
angular Bragg peak shifts in radians, �(2θ), for reflections from {200} and {400} planes in a
FCC crystal are:

�(2θ)200 = −
√

3α tan θ200

4π
, �(2θ)400 = +

√
3α tan θ400

8π
, (3)

where 1/α is the average number of planes between two consecutive stacking faults.
The diffraction angle θ is related to the magnitude of the diffraction vector G via the

expression

sin θ = G

2k
. (4)

Combining the derivative of this expression with equation (3) gives the respective shifts in the
second-and fourth-order peaks in k-space due to the stacking faults as



6752 K Rosolankova et al

dG200 = −
√

3G200α

8π
, dG400 = +

√
3G400α

16π
. (5)

Since an x-ray diffraction measurement is equivalent to taking a Fourier transform of
the lattice, equation (5) provides the shifts, solely due to the presence of dislocations in the
material, in the positions of the points in k-space. (It should be noted that this expression is
one-dimensional, i.e. in the second order, the shift of the peak corresponding to point (200) in
k-space will be along the kx direction only, for the (020) peak the shift will be along ky etc.
The same is true for the fourth-order diffraction.)

Now, as well as the shifts in diffraction due to the stacking faults, the peaks will move in
k-space due to compression of the lattice by the shock (in the presence of plastic flow, there is
elastic strain within the lattice in all three orthogonal directions). In this paper we consider the
influence of these stacking faults on diffraction from shocked single crystals, as have been used
previously in nanosecond resolution diffraction experiments [8]. Let us define the position of,
say, the (200) peak in k-space in the absence of stacking faults (but taking account of elastic
compression), as 2A, and thus that of the (400) peak is 4A. We denote by |200| and |400| the
actual respective kx -component of the distances from the origin in k-space of the (200) and
(400) reflections. The positions of the diffraction peaks in k-space can then be rewritten in the
form:

|200| = 2A − A
√

3α

4π
, |400| = 4A + A

√
3α

4π
. (6)

Similar expressions follow for orthogonal directions in k-space. As A represents the theoretical
position of the first-order diffraction peak, in reality forbidden in FCC crystals, discounting
the dislocation-induced shift of the x-ray diffraction peaks, the values of A inferred from
equation (6) for points which, in the uncompressed crystal, lie at (100), (010), and (001) in
k-space are the corners of the ‘corrected’ first-order inverse unit cell. Thus the values of A for
the directions in kx , ky and kz can be used to determine the volumetric compression as deduced
from diffraction, a strain which should agree with the atomic density rise in the sample due to
the shock-induced compression of the material.

Eliminating A from the expressions in equation (6), we then find that the probability of the
occurrence of a stacking fault between any two consecutive planes, α, is given by:

α = 8π(|400| − 2|200|)√
3(|400| + |200|) . (7)

This is related to the dislocation density, ρd:

ρd = (α/ l)2, (8)

where l is the separation of two consecutive planes in the crystal.

3. Simulations

A computational x-ray diffraction tool for calculating three-dimensional (3D) Fourier
transforms (FT) was developed for post-processing of MD simulations of shock-compressed
crystals. The use of 3D FT provides better accuracy in comparison with one-dimensional (1D)
or two-dimensional (2D) FT.

The output from an MD simulation of a shocked single copper crystal containing 256×106

atoms was studied [16]. Its dimensions prior to shock launch were 200 × 200 × 1600 unit
cells, with the long side of the sample along the shock propagation direction [001], and the
unperturbed unit cell size a0 = 3.615 Å. The simulation thus spanned 0.6 µm in length. In
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terms of the unit cell positions, the location of the centre of the crystal prior to shock launch
was at (0, 0, 0) along the three primary axes. In other words, the limits of the crystal, in terms
of the unit cells, were −100 and +100 for both [100] and [010] directions, and −800 and +800
for the [001] direction.

Two prismatic loops were incorporated into the crystal prior to shock launch. The first
one was located at ∼0.18 µm and the second one at ∼0.4 µm along the z axis, corresponding
to unit cell positions of ∼−320 and ∼230, respectively. The shock wave launched in the
crystal had a 50 ps long linear ramp. The peak pressure generated was 35 GPa, exceeding the
thresholds for homogeneous and inhomogeneous dislocation generation of ∼32 and ∼10 GPa,
respectively. The total duration of the simulation was ∼130 ps. The simulation studied was
therefore a complicated system enhanced with features such as the embedded defects and the
linear ramp, in order to faithfully represent a real experimental crystal sample. Further details
of this particular simulation can be found in the work of Bringa [16].

3.1. Results

A snapshot of the atomic positions was taken from the MD simulation at a time of 125 ps after
the start of the simulation. By this time the foot of the ramp had traversed nearly 700 unit
cells, and the ramp, originally of 50 ps duration, had steepened considerably. For this particular
output in time, the 3D FT of the atomic positions was calculated for various regions of the
crystal along its length, and the weighted centres of intensity for the Bragg peaks (both second
and fourth order) were determined. The positions of the peaks can be used to infer the lattice
spacing, and hence compression. The results of this analysis, at this stage without taking into
account possible shifts in the Bragg peaks due to the stacking faults, are shown in figure 2.

In this figure, the shock has propagated from left to right. We show the elastic strains in
the crystal along the length of the crystal inferred from the positions of simulated diffraction
peaks. Note that the strain in the shock propagation direction (z direction) is larger than the
strain in the orthogonal directions, i.e. the material is not compressed in a fully hydrostatic
manner. Nonetheless, significant plastic flow must have taken place to give rise to the elastic
strains in the orthogonal directions (in these directions, the elastic and plastic strains should be
equal and opposite).

It is not our intention to go into a full analysis of the mechanisms and rate of plasticity
in this particular simulation, as that is covered in the work of Bringa and co-workers [16].
However, what should be noted from figure 2 is that the volumetric strain inferred from the
Bragg peak positions in the three principal directions in k-space (again, we emphasize that this
is neglecting the effect of dislocations) does not entirely agree with the compression of the
crystal gleaned from the MD simply by calculating the atomic density in a given region of the
sample by counting the number of atoms in a unit of volume. Indeed, it can be seen that the
compression inferred from the x-ray peak positions is less than that given by the atomic density
calculation in the case of second-order diffraction, but greater than for fourth-order diffraction.
Also, note that the discrepancy between the compression inferred from diffraction simulation
and atomic density calculation is least at the shock front (where the plastic flow must be least,
as there is little strain orthogonal to the propagation direction), and greatest at the left-hand
boundary—a region where, as we shall see later, plastic flow is largely due to homogeneous
dislocation generation.

As shown above, the positions of the second-and fourth-order peaks can be used to
derive both A, the theoretical first-order diffraction peak position taking into account the
presence of dislocations, and α, the probability of stacking fault occurrence between two
consecutive atomic planes. A measurement of A in the three orthogonal directions provides
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Figure 2. Second-order (top) and fourth-order (bottom) results of simulated x-ray diffraction.
Volumetric compression of sampled cubic sections can be compared with atomic density rise. Two
vertical lines mark the original positions of the two prismatic loops. The shock propagates from left
to right, with the shock front at z = +675.

the measurement of crystal compression after taking into account shifts in the peak due to the
dislocation densities.

For the sample analysed here, the corrected compressions calculated using equation (7) are
shown in figure 3. Once the fault-induced shifts in the diffraction peaks have been accounted
for, excellent agreement between the x-ray diffraction results and the atomic density rise is
reached for all regions of the crystal.

3.2. Dislocation densities

Dislocation densities calculated using equation (8) are shown in figure 4. Note that the inferred
dislocation density is highest to the left of the crystal, reaching values of order ∼2×1013 cm−2,
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Figure 3. Corrected 1D and volumetric strains in sampled cubic sections of Cu simulation.

with an approximately three-fold decrease in density once the compression wave has passed the
first prismatic loop. Shown alongside the dislocation densities inferred from the shifts of the
diffraction lines are the densities obtained by directly counting dislocations within the image of
the simulation. Certain parts of the crystal between the prismatic loops, near unit cell positions
z = −100 and +75, have significantly lower dislocation densities than regions ahead of and
behind them. X-ray diffraction post-processing yielded volumetric compressions coinciding
with the atomic density rise in both second-and fourth-order calculations in these crystal regions
(figure 2). The stacking fault densities were clearly too low to induce any significant shifts in
the diffraction peaks. As such, the errors on the inferred values of α and dislocation densities
are too large for the results to have any quantitative validity. For this reason, Figure 4 omits the
values of dislocation density at these points. The horizontal line marked on the graph indicates
the cut-off dislocation density value, which can still be considered quantitatively accurate (i.e.
at least from this MD simulation, our error bars are too high to detect dislocation densities
below this value).

A snapshot of the dislocations is also shown in figure 4. This image is obtained by noting
that atoms within the stacking faults have a different centro-symmetry parameter than the FCC
material [20]. This image shows only those atoms present within such stacking faults. The
dislocation density can then be found directly simply by counting the number of faults crossing
unit area. We note that the agreement between the dislocation density inferred from diffraction
and that obtained directly is good—within approximately a factor of two. Both methods show a
higher concentration of dislocations on the left-hand side of the sample, with a reduction once
the first prismatic loop is reached.

A detailed analysis of the physics behind the changes in dislocation density across this
sample will be presented in the work of Bringa [16]—we give a brief explanation here only for
the sake of completeness, as the main purpose of this work is to show the consistency between
the diffraction approach and the direct counting method. This sample is being compressed by
a ramped pressure pulse. Within perfect crystals, once the theoretical shear strength of the
material is reached, a high density of dislocations is generated homogeneously at the shock
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densities found by direct counting of atoms in the MD simulations. Lower diagram: a snapshot of
the corresponding MD simulation [16]

(This figure is in colour only in the electronic version)

front (for this sample, this shear stress is ∼32 GPa). We have found that such high densities of
dislocations can have relatively low mobility, as they interlock. This is what happens at early
times in the left-hand part of the crystal. However, a prismatic loop acts as a heterogeneous
source of dislocations, and can generate new dislocations at shear stresses well below the
theoretical shear strength of the material. Thus as the ramp passes over the prismatic loops,
dislocations are formed at lower stresses than in the perfect crystal, and such dislocations are
also more mobile (for the loops inserted into this sample, the threshold for the activation of
the loop was ∼10 GPa). This results in a greater reduction in shear stress for, in fact, fewer
dislocations. As noted above, this is not of particular importance for the work contained here,
but it gives some insight into why there are different dislocation densities in different regions
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of the crystal. What is of significance is that the diffraction technique appears to be capable of
resolving these differences.

4. Conclusion

We have identified a method for the calculation of dislocation densities in shock-loaded crystals
using in situ x-ray diffraction, by comparing the results from the second and fourth diffraction
orders in modelled x-ray diffraction from MD simulation of shocked copper crystal. The results
are in good agreement with those calculated directly from the MD simulation. As nanosecond
diffraction patterns can be obtained experimentally from shocked samples, this work points
to the feasibility of making direct in situ measurements of dislocation densities in shocked
crystals.
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